11. BRANCHENTAG WASSERSTOFF WIEN

H2 DEMONSTRATION MIT BHKW's IM MW BEREICH

Dr. Klaus Payrhuber klaus.payrhuber@innio.com

EVN Forum, 8. April, 2025

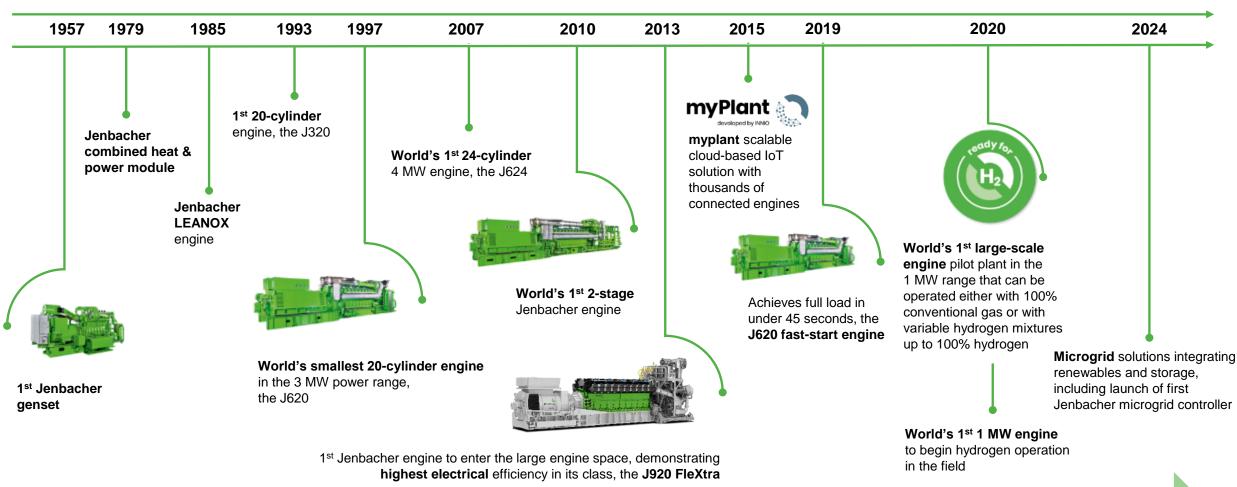
AGENDA

Introduction

H2 Blending until 2020

Demonstrating 100% H2 Applications

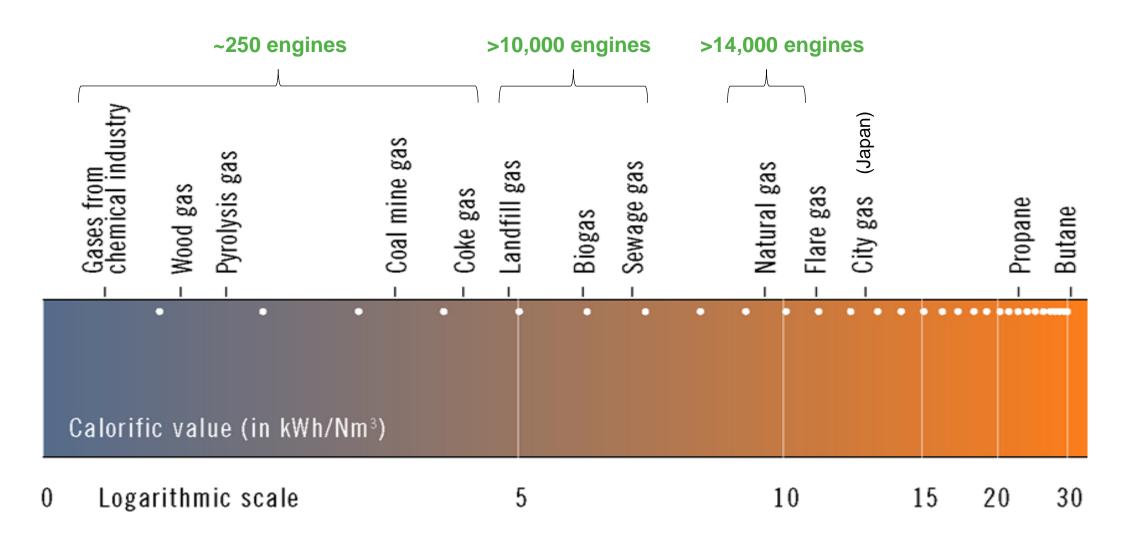
Ammonia


Case Studies

INNIO Group is a leading energy solution and service provider **headquartered in Jenbach (Austria)**, with other primary operations in Waukesha (Wisconsin, U.S.) and Welland (Ontario, Canada)

CONTINUOUS EVOLUTION IN INNOVATION MAKES SUSTAINABLE ENERGY WORK TODAY

Timeline



In 2015: 1st to break 50.1% electrical efficiency milestone in a test environment, the Type 9 engine platform

More focus on **fuelflex** and **opflex**

GAS ENGINE FUEL RANGE

Jenbacher engines

PROVEN EXPERIENCE WITH HYDROGEN & HYDROGEN MIXTURES

30 yrs experience

Proces Tailgas (COD	Krems)	Syngas	o Energy s (Mutsu) 9 2003	H ₂ bler	Dual Gas nding (Hychico) OD 2008		Hydrogen 2021+	
2	~15-17 vol% ~1.5 vol% ~80-87 vol%	H ₂ CO N ₂ &CC	~30-40 vol% ~25-30 vol% 0 ₂ ~35 vol%	H₂ CH₄	~0-42 vol% ~100-58 vol%	H_2	100 vol%	
LHV	~0.5 kWh/m ³	LHV	~2.5 kWh/m ³	LHV	~10-7 kWh/m ³	LHV	~3 kWh/m ³	
		Commer	cial operation				Future	

More than 250 MW installed with syngas / process gases, 90 projects, 28 countries

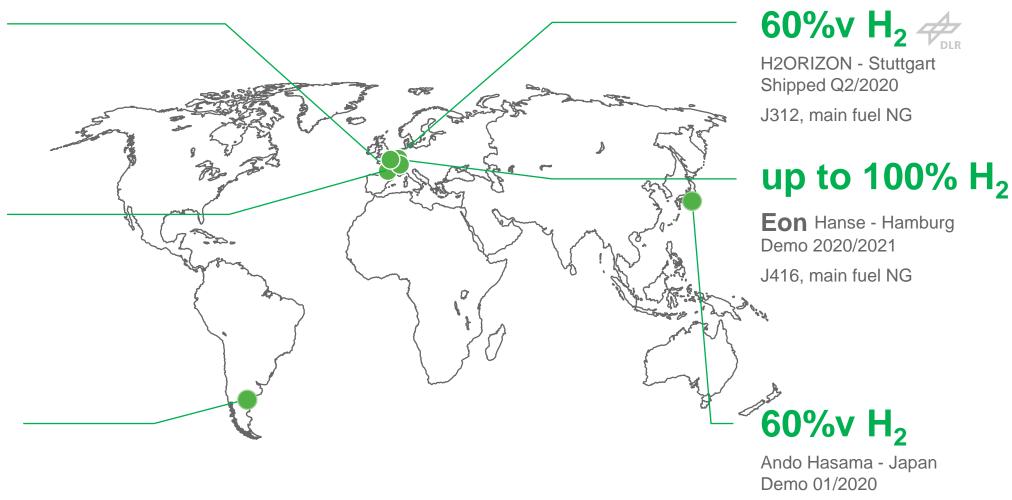
H2 BLENDING UNTIL 2020

H₂ ADMIXING DEMO PROJECTS

30%v H₂

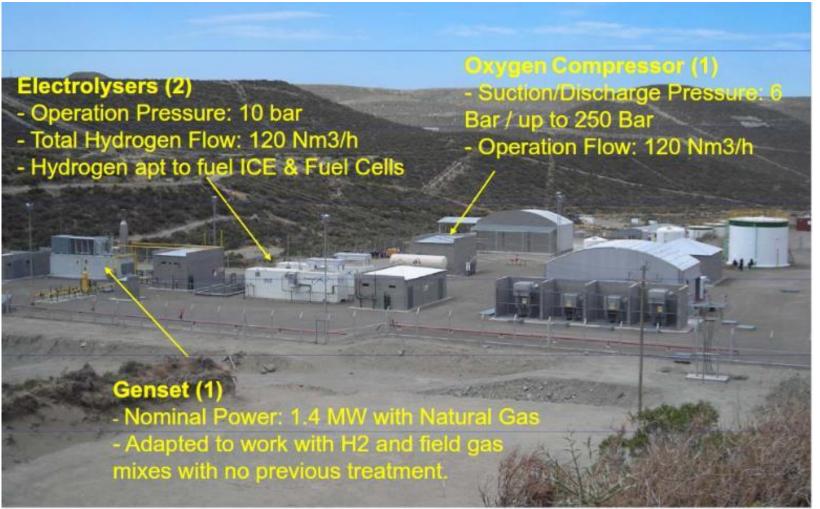
Bozen - Italy Horizon 2020 Demo J612, main fuel NG

30%v H₂

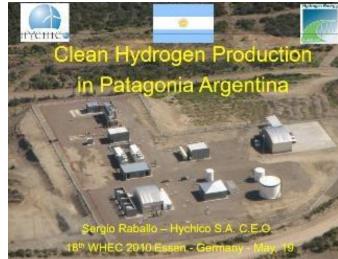

Biogas Stream- Austria 2008 Demo

J312, main fuel NG

42%v H₂


Hychico – Argentina Operating since 2008 J420, main fuel NG

HYCHICO



J312, main fuel NG

HYCHICO, ARGENTINA SITE

DEMONSTRATING 100% H2 APPLICATIONS

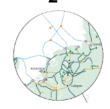
H₂ APPLICATIONS FOR POWER GENERATION

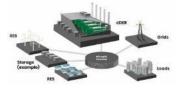
First H₂ movers

Developed H₂ infrastructure

Datacenter

back-up power


H₂-Demo projects



typically green H2

H₂-Hub & Microgrids

Grid balancing

blue or green H2

1

Industrial H₂

typically gray H2

Islands

Flexible CHP

blue or green H2

KremsChem, KREMS, AT H2 rich process tailgas expansion project

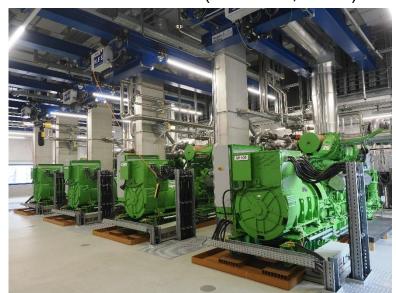
1

Existing since 1996

+

4 x J320 ~2,400 kW

Baseload operation


- 8,000+ oph / yr / engine
- 200,000 oph / engine (2023)

 H_2 : ~15-17 vol% CH_4 : ~1.5 vol% Rest: N_2 and CO_2

>95% H₂

LHV: ~0.5 kWh/m³

Extension 2024 (COD Q2, 2024)

4 x J420 ~3,300 kW

Baseload operation

CHP with steam generation

 H_2 : ~19 vol% CH_4 : ~0 vol% $Rest: N_2$ and CO_2 >98% H_2 as fuel

LHV: ~0.55 kWh/m³

NORTHC DATACENTERS, EINDHOVEN, NL

First data center with H2-Engines for emergency backup

NorthC Data Center

Small-scale regional DC in Netherlands, Germany, & Switzerland 15 local DCs, with 10 in NL

Carbon neutral by 2030

DC Groningen (2022): 1st with standby H₂ fuel cell

DC Eindhoven (2023): 1st with 6 x Jenbacher JGC420 H2-Engines

Going forward ... new and replacement standby power based on H₂

Data Center Eindhoven – 6 + 2 H2-Engines

6 MWe ... standby power based on 6 +2 x 1 MWe JGC420 H2-Engines Replacing concept with multiple 1.5 – 2.0 MWe standby diesel generators


Re-designing concept for UPS & cooling/chillers

Dual fuel H2-Engines (pipeline gas as back-up fuel)

H₂ as main fuel from local H₂ storage until H₂ pipeline is available

Pipeline gas as backup fuel in case of longer grid failures

J420	Pipeline Gas	100% H ₂
Electrical output	1,060 kW	1,060 kW
Electrical efficiency*	38.4%	~38.4%
Total efficiency	~89%	~85%
NO _x emissions	<250 mg/Nm ³ @ 5%O ₂	<100 mg/Nm ³ @ 5%O ₂
CO ₂ emissions	226 g/kWh _{el}	0 g/kWh _{el}
H ₂ consumption		~83 kg/h

Largest 60 Hz H2-Engine IPP CHP in Asia

Hydrogen as a by-product from polypropylene production from Hyosung chemical

Hyosung Heavy Industries is demonstrating the use of hydrogen and designed it as an industrial CHP (with steam boiler)

H2-Engine delivery in 2023, successfully commissioned in mid-2024

H2-Engine installation and service provided by INNIO Group's Jenbacher authorized distributor RNP

JENBACHER

* Special generator design

RAG UNDERGROUND HYDROGEN STORAGE, AUT

1st of its kind in Europe - world's 1st 100% hydrogen storage facility in a porous underground reservoir

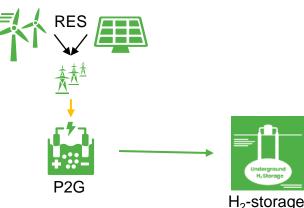
Summer operation

Solar PV overcapacity
2 MW electrolyzer for green H₂ production
H₂ compression

Seasonal storage

1.2 million Nm³ H₂ storage in modified NG storage
Gas chromatograph at H₂ discharge
8 km H₂-pipeline from H₂-storage to CHP unit
Up to 600 Nm³/h H₂-pipeline capacity

Winter operation


J412 containerized CHP
530 kW electrical output & 550 kW heat output
100% H₂ & up to 40% NG/60% H₂ mixture
Commissioning date early 2024
~2,000 to 4,000 oh/yr

Winter operation

Summer operation

Hydrigen H₂-CHP 700+

Source: INNIO Group to deliver innovative hydrogen technology... Press Release

Oh

"READY FOR H2" - RWE GUNDREMMINGEN, GER Highly flexible gas power plant

- Modular Gas Engine plant with low installation costs
- Multi engine plant allows high efficiency over entire load range
- Identical units for reduced maintenance cost
- Remote monitoring with myPlant allows unmanned operation
- · "Ready for H2"
- Connected to 110kV grid

2026+

Year of commissioning

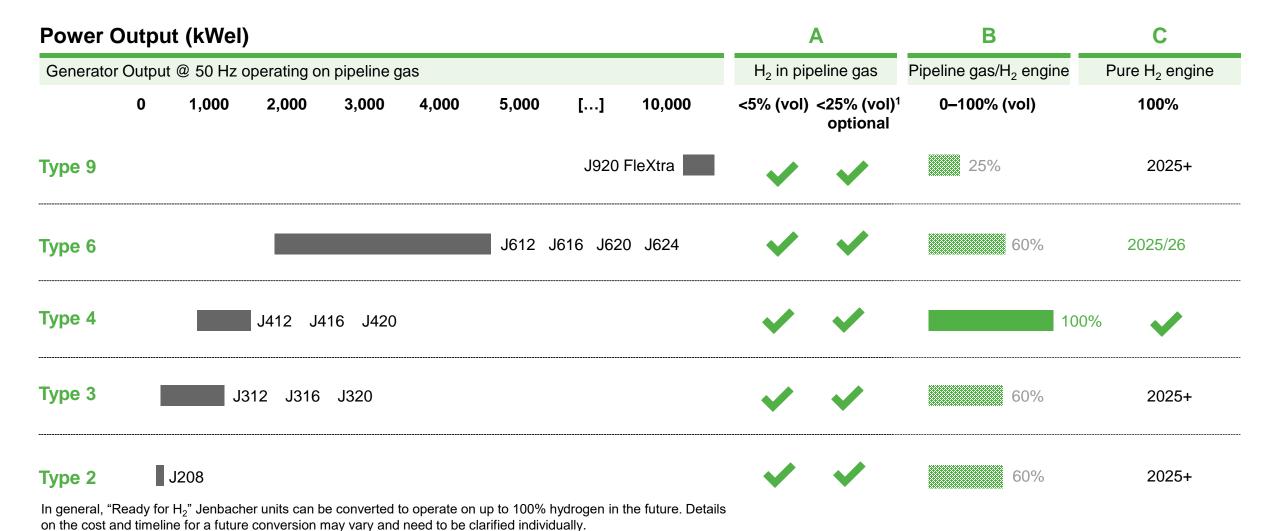
READY FOR H₂ – WHAT DOES IT MEAN? **INNIO Definition**

INNIO Definition

All new Jenbacher engines are "Ready for H₂"

In general, "Ready for H₂" Jenbacher units can be converted to operate on up to 100% hydrogen in the future. Details on the cost and timeline for a future conversion may vary and need to be clarified individually.

Furthermore, all models can be offered with the option to operate with up to 25% (vol) H₂ in the pipeline gas.


Type 4 engines are offered for 100% H₂ operation today

Type 6 engines will be developed for 100% H₂ operation in 2025

Jenbacher then covers the full range of 500 kW to 4 MW of hydrogen products.

READY FOR H₂ — JENBACHER PRODUCT PORTFOLIO

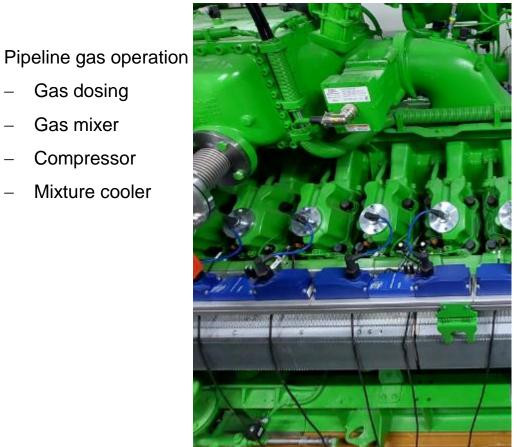
Available products today and tomorrow

H2 ENGINE – TYPE 4 – 50HZ (PRE-SERIAL ENGINE)

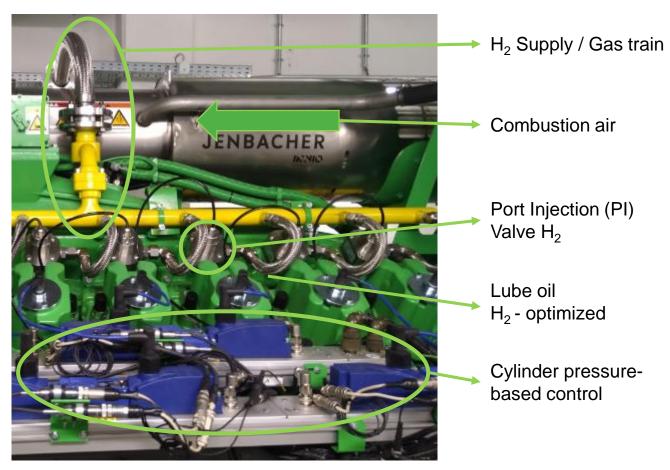
H2 <100mg/Nm ³ NO _x @5%O ₂	J412-H2	J416-H2	J420-H2
Electrical Output (kW)	620	830	1040
Thermal Output (kW)	730	970	1210
Electrical Efficiency (%)	40.3%	40.3%	40.5%
Total Efficiency (%)	88%	88%	88%
H ₂ consumption (kg/h)	46	62	77
H ₂ consumption (Nm ³ /h)	515	686	858

Technology

- Port injection (gas pressure 8+bar)
- Cylinder selective combustion control
- Wastegate for turbo charger


Alternatively, a "Dual Fuel Product" – 100% pipeline gas / 100% H_2 – is available

H2-ENGINE – BASED ON TYPE 4


Pipeline gas vs. Hydrogen

Jenbacher Type 4 – Mixture charged

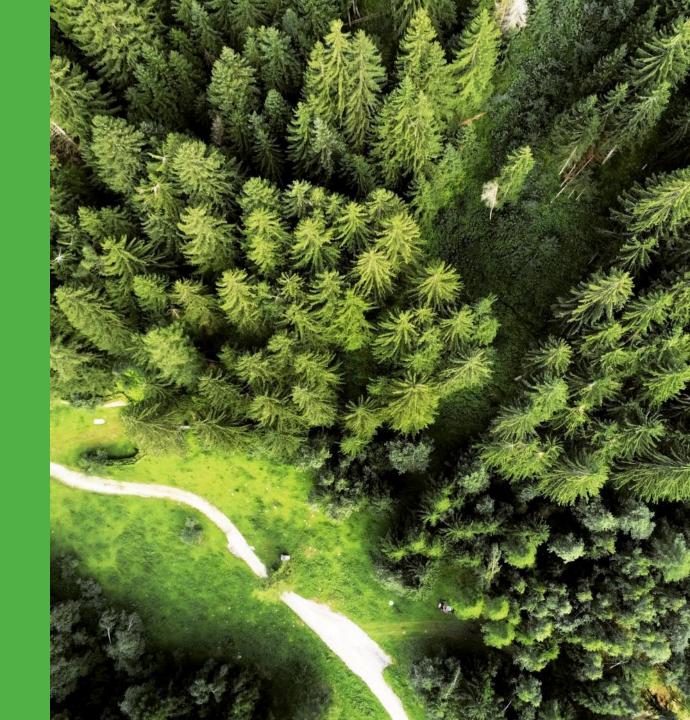
- Gas dosing
- Gas mixer
- Compressor
- Mixture cooler

Jenbacher H2-Engine* – Port fuel injection

*In general, "Ready for H2" Jenbacher units can be converted to operate on up to 100% hydrogen in the future. Details on the cost and timeline for a future conversion may vary and need to be clarified individually.

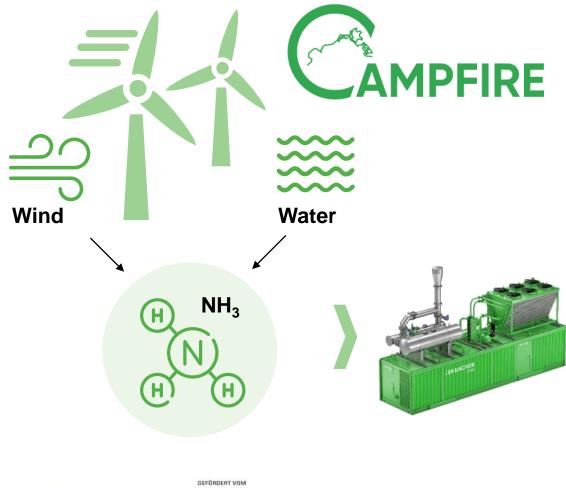
HYDROGEN GENERATION AND SUPPLY IN JENBACH

Visualization


H2 production

Nom. el. power
H2-production
Annual capacity
2 x 1 MWe
35 kg/h total
200 – 300 t/a

H2 storage


H2 tank capacity 1,000 kg
Pressure 500 bar
Time to re-charge ~23 h

AMMONIA

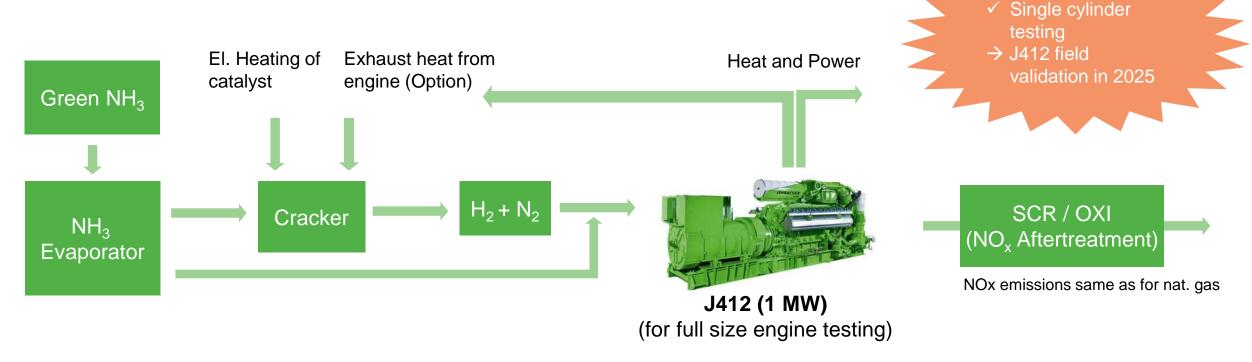
PROJECT CAMPFIRE – WIND & WATER → AMMONIA

Ammonia in the context of maritime fuels and chem. energy storage systems of the future

JENBACHER

Aim of sub-project CF12:

- > Development of a container-based NH3 CHP for a stationary application
- > Remote off-grid application
- ➤ Power range of 1 MW


Including

- various evaluation steps of critical components of the gas engine
- · detailed design
- · implementation of the container CHP plant
- integration of the NH3 cracker and necessary safety equipment
- · various test runs
- stationary and flexible start/stop operation
- · optimizing efficiency and minimizing exhaust emissions

Stationäre Energie - Campfire (wir-campfire.de)

GAS ENGINE OPERATING ON AMMONIA

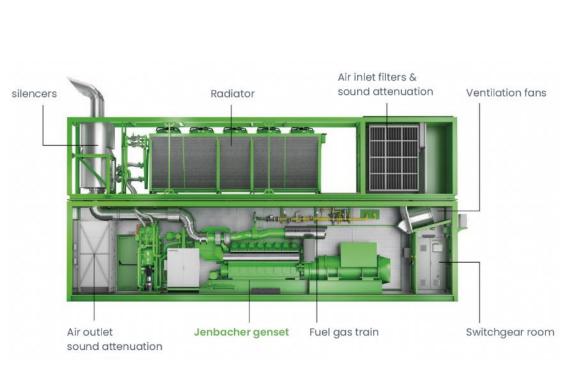
With catalytic decomposition of Ammonia

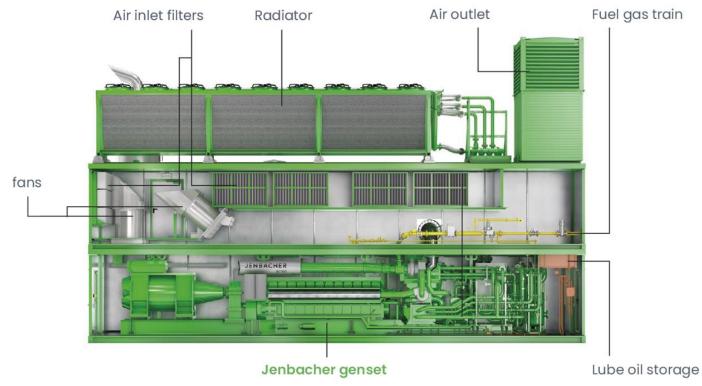
Catalytic decomposition of Ammonia to Hydrogen and Nitrogen to promote combustion:

Partial decomposition of Ammonia utilizing a heated catalyst (el. heating or utilization of exhaust heat)

Hydrogen and Nitrogen produced during the catalytic decomposition are blended with the main fuel (Ammonia).

The favorable physical properties of Hydrogen help promote the combustion of Ammonia in the combustion chamber of the engine.


CASE STUDIES



JENBACHER – J6 SERIES ENGINES

J620 - 3.3 MW

J624 - 4.5 MW

60 MW JENBACHER GAS ENGINES, IRLAND For large-scale data center

60 MW backup power for data center

22 x Type 6 containerized gas engines take over the peak and backup power supply

Ready to be converted to H₂ operation in the future

Europe's largest engine-powered data center that runs on natural gas instead of diesel

»Winthrop's Gen Team selected INNIO Group's Jenbacher team to build this power plant because these engines offer diesel-like performance combined with high efficiency and the ability to run continuously. Due to its consistent progress in implementing its ESG strategy, including hydrogen capability, the company has been awarded the Platinum Medal by EcoVadis. This makes INNIO Group's Jenbacher technology an obvious choice for us.«

Noel Molloy, Operation Director at Winthrop Technologies

in 45 sec. to 100% load

for illustration only

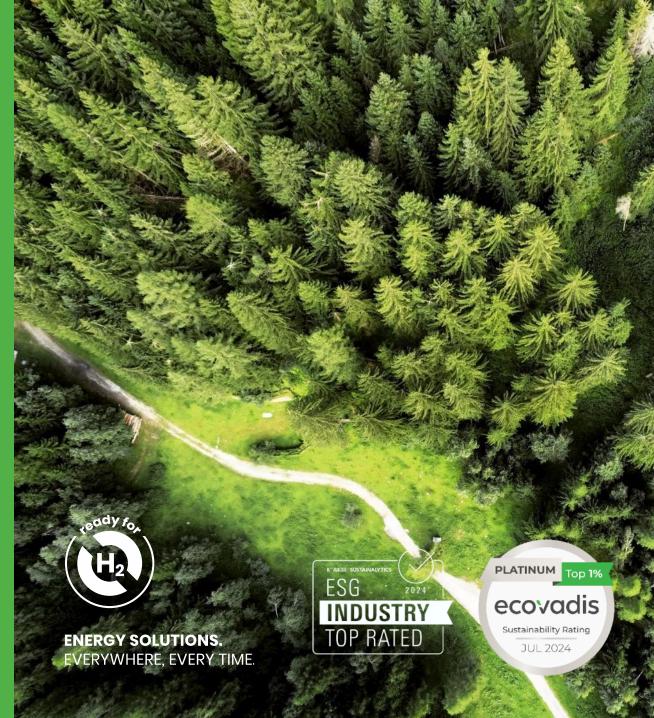
INNIO Group is a leading energy solution and service provider that empowers industries and communities to make sustainable energy work today. With its Jenbacher and Waukesha product brands and its Al-powered myPlant digital platform, INNIO Group offers innovative solutions for the power generation and compression segments that help industries and communities generate and manage energy sustainably while navigating the fast-changing landscape of traditional and green energy sources. INNIO Group is individual in scope, but global in scale. With its flexible, scalable, and resilient energy solutions and services, INNIO Group enables its customers to manage the energy transition along the energy value chain wherever they are in their transition journey.

INNIO Group is headquartered in Jenbach (Austria), with other primary operations in Waukesha (Wisconsin, U.S.) and Welland (Ontario, Canada). Through a service network in more than 100 countries, a team of more than 4,000 experts provides life-cycle support to the more than 57,000 engines that INNIO Group has delivered globally.

INNIO Group's ESG strategy has been recognized and awarded by esteemed rating agencies such as Sustainalytics and EcoVadis. Additionally, the company's near-term climate targets until 2030 have been validated by the Science Based Targets initiative (SBTi).

For more information, visit INNIO's website at <u>www.innio.com</u>. Follow INNIO Group and its brands on <u>X</u> (formerly known as Twitter) and LinkedIn.

© Copyright 2025 INNIO.


Information provided is subject to change without notice. This material is INNIO proprietary information and may not be copied or distributed in whole or part without the prior written permission of the copyright owner.

In general, "Ready for H₂" Jenbacher units can be converted to operate on up to 100% hydrogen in the future. Details on the cost and timeline for a future conversion may vary and need to be clarified individually.

INNIO, Jenbacher, Waukesha, and myplant are trademarks or registered trademarks of the INNIO Group, or one of its subsidiaries, in the European Union, the United States and in other countries. For a list of INNIO Group trademarks, please visit innio.com/trademarks. All other trademarks and company names are the property of their respective owners.

JENBACHER

Jenbacher is part of the INNIO Group

